细胞破碎的方式
细胞破碎技术是指利用外力破坏细胞膜和细胞壁的样品处理方式,使细胞内容物包括目的产物成分释放出来的技术,是分离纯化细胞内合成的非分泌型生化物质(产品)的基础。 结合重组DNA技术和组织培养技术上的重大进展,以前认为很难获得的蛋白质现在可以大规模生产。
细胞破碎阻力
细菌
几乎所有细菌的细胞壁都是由肽聚糖(peptidoglycan)组成,它是难溶性的聚糖链(glycan chain),藉助短肽交联而成的网状结构,包围在细胞周围,使细胞具有一定的形状和强度。短肽一般由四或五个胺基酸组成,如L-丙氨酰-D-谷氨酰-L-赖氨酰-D-丙氨酸。而且短肽中常有D-胺基酸与二氨基庚二酸存在。破碎细菌的主要阻力是来自于肽聚糖的网状结构,其网结构的致密程度和强度取决于聚糖链上所存在的肽键的数量和其交联的程度,如果交联程度大,则网结构就致密。
酵母菌
酵母细胞壁的zui里层是由葡聚糖的细纤维组成,它构成了细胞壁的刚性骨架,使细胞具有一定的形状,覆盖在细纤维上面的是一层糖蛋白,zui外层是甘露聚糖,由1,6一磷酸二酯键共价连接,形成网状结构。在该层的内部,有甘露聚糖-酶的复合物,它可以共价连接到网状结构上的方式,也可以不连接。同细菌细胞壁一样,破碎酵母细胞壁的阻力主要决定于壁结构交联的紧密程度和它的厚度。酵母种类繁多,有部分很难破碎,对于超声波破碎仪有更高的要求。基本上推荐Branson超声波破碎仪中的大功率型号,或者引入Branson大功率发生器,根据要求专门设计使用方案。这样可以保证的使用效果。
真菌
霉菌的细胞壁主要存在三种聚合物,葡聚糖(主要以β-1,3糖苷键连接,某些以β-1,6糖苷键连接),几丁质(以微纤维状态存在)以及糖蛋白。zui外层是α-和β-葡聚糖的混合物,第2层是糖蛋白的网状结构,葡聚糖与糖蛋白结合起来,第3层主要是蛋白质,zui内层主要是几丁质,几丁质的微纤维嵌入蛋白质结构中。与酵母和细菌的细胞壁一样,真菌细胞壁的强度和聚合物的网状结构有关,不仅如此,它还含有几丁质或纤维素的纤维状结构,所以强度有所提高。
植物细胞
对于已生长结束的植物细胞壁可分为初生壁和次生壁两部分。 初生壁是细胞生长期形成的。 次生壁是细胞停止生长后,在初生壁内部形成的结构。 目前,较流行的初生细胞壁结构是由Lampert等人提出的「经纬」模型,依据这一模型,纤维素的微纤丝以平行于细胞壁平面的方向一层一层敷着在上面,同一层次上的微纤丝平行排列,而不同层次上则排列方向不同,互成一定角度,形成独立的网络,构成了细胞壁的「经」,模型中的「纬」是结构蛋白(富含羟脯氨酸的蛋白),它由细胞质分泌,垂直于细胞壁平面排列,并由异二酪氨酸交联成结构蛋白网,径向的微纤丝网和纬向的结构蛋白网之间又相互交联,构成更复杂的网络系统。半纤维素和果胶等胶体则填充在网络之中,从而使整个细胞壁既具有刚性又具有弹性。在次生壁中,纤维素和半纤维素含量比初生壁增加很多,纤维素的微纤丝排列得更紧密和有规则,而且存在木质素(酚类组分的聚合物)的沉积。因此次生壁的形成提高了细胞壁的坚硬性,使植物细胞具有很高的机械强度。由于植物细胞的相对壁厚,超声波破碎产品的能量集中度会对处理结果有很大的影响。超声波破碎仪一般来说会取得更好的表现。